Inverse Nodal Problem for a Conformable Fractional Diffusion Operator With Parameter-Dependent Nonlocal Boundary Condition
نویسندگان
چکیده
In this paper, we consider the inverse nodal problem for conformable fractional diffusion operator with parameter-dependent Bitsadze–Samarskii type nonlocal boundary condition. We obtain asymptotics eigenvalues, eigenfunctions, and zeros of eigenfunctions (called points or nodes) considered operator, provide a constructive procedure solving problem, i.e., reconstruct potential functions p(x) q(x) by using dense subset points.
منابع مشابه
Inverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions
In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...
متن کاملOptimal results for a time-fractional inverse diffusion problem under the Hölder type source condition
In the present paper we consider a time-fractional inverse diffusion problem, where data is given at $x=1$ and the solution is required in the interval $0
متن کاملsolving an inverse problem for a parabolic equation with a nonlocal boundary condition in the reproducing kernel space
on the basis of a reproducing kernel space, an iterative algorithm for solving the inverse problem for heat equation with a nonlocal boundary condition is presented. the analytical solution in the reproducing kernel space is shown in a series form and the approximate solution vn is constructed by truncating the series to n terms. the convergence of vn to the analytical solution is also proved. ...
متن کاملoptimal results for a time-fractional inverse diffusion problem under the hölder type source condition
in the present paper we consider a time-fractional inverse diffusion problem, where data is given at $x=1$ and the solution is required in the interval $0
متن کاملInverse nodal problem for p-Laplacian with two potential functions
In this study, inverse nodal problem is solved for the p-Laplacian operator with two potential functions. We present some asymptotic formulas which have been proved in [17,18] for the eigenvalues, nodal points and nodal lengths, provided that a potential function is unknown. Then, using the nodal points we reconstruct the potential function and its derivatives. We also introduce a solution of i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cumhuriyet Science Journal
سال: 2023
ISSN: ['2587-2680', '2587-246X']
DOI: https://doi.org/10.17776/csj.1243136